Chimera States in Nonlinear Systems with Multiple Delayed Feedbacks

Bogdan Penkovsky
FEMTO-ST Institute, France

in collaboration with
D. Brunner R. Levchenko E.Schöll L. Larger Y. Maistrenko
Delays affect your life in a number of ways

Long-distance light propagation

Propagation delays in the brain

Traffic jams

Hot-cold water control in a shower!
Delayed-feedback Systems
Delay Differential Equations (DDEs)

\[\tau \dot{x}(t) + x(t) = \beta f (x(t - \tau_D)) \]

- \(x(t) \) is dynamical variable
- \(\tau_D \) is delay time
- \(\tau \ll \tau_D \) is system response time
- \(f(x) \) is nonlinear transformation
- \(\beta \) is feedback gain
Dynamical regimes. Bifurcations

\[\beta = 1.9 \]

\[\beta = 2.2 \]

\[\beta = 2.55 \]
Applications of NL Delay Dynamics

- Chaos communications, 1995
- High spectral purity microwave oscillators, 1994
- Photonic Reservoir Computing, 2012
- Chimera study in networks of virtual oscillators, 2013
Understanding NL Dynamical Networks is Crucial

- Power grids
- Internet
- Social networks
- Bird swarms
- Brain

* Image from S. H. Strogatz (Nature, 2001.)
What are chimeras?

...monstrous fire-breathing creatures
Chimeras: Kuramoto and Delay Networks

- Chimera is a network state consisting of incongruent parts: **coherent and chaotic**.

- Chimera states can arise in many real-world networks:
 - Power grids
 - Networks of neurons in the human heart

Leading to failure of the system.

Are chimeras possible in delay systems?

Y. Kuramoto (Nonlin. Phenomena in Complex Sys., 2002.)
Chimeras in single delay systems
Experimental Setup For Delay Chimeras

- Laser light is NL transformed
- The signal is delayed, filtered
- The signal is modulating the wavelength of the laser
Experimental Setup For Delay Chimeras

\[\varepsilon \dot{x} + \delta \int_{t_0}^{t} x(\xi) d\xi + x = \beta f(x(t-1)) \]
Experimental Setup For Delay Chimeras

\[\varepsilon \dot{x} + \delta \int_{t_0}^{t} x(\xi) d\xi + x = \beta f \left(x(t - 1) \right) \]
System Properties

NL function asymmetry

Bistability: low gradient and large gradient

Singular limit map $x_n = \beta f(x_{n-1})$
"Coupling" Induced By Filters

\[\varepsilon \dot{x} + \delta \int_{t_0}^{t} x(\xi) d\xi + x = \beta f(x(t-1)) \]

\[x_{\sigma}(n') = x_{\sigma}(n' - 1) + \int_{\sigma - 1}^{\sigma} h(\sigma - \xi') \cdot f [x_{\xi'}(n' - 1)] d\xi' \]

Impulse response function \(h(t) \)

Discrete coupling

Continuous coupling

Nonlinearity
DDE "Coupling": Impulse Response Function

Long-range coupling thanks to the integral term

$$\delta \int_{t_0}^{t} x(\xi) \, d\xi$$

$$x_\sigma(n') = x_\sigma(n' - 1) + \int_{\sigma-1}^{\sigma} h(\sigma - \xi') \cdot f \left[x_{\xi'}(n' - 1) \right] d\xi'.$$

- Discrete coupling
- Impulse response
- Continuous coupling
- Nonlinearity
Network Analysis: Space-Time Representation

Two-dimensional representation of a delayed dynamical system

F. T. Arecchi, * G. Giacomelli, A. Lapucci, and R. Meucci
Istituto Nazionale di Ottica, Largo E. Fermi 6, 50125 Firenze, Italy
(Received 31 July 1991; revised manuscript received 10 December 1991)

- Stacking temporal coordinates
- Virtual space
Network Analogy. Space-Time Representation

\[x(t) \]

\[0 \quad \tau_D \quad 2\tau_D \quad 3\tau_D \quad t \]

\[0 \quad \tau_D \quad 2\tau_D \quad 3\tau_D \quad 4\tau_D \]

\[0 \quad \tau_D \quad 2\tau_D \quad 3\tau_D \quad 4\tau_D \]

\[0 \quad \tau_D \quad 2\tau_D \quad 3\tau_D \quad 4\tau_D \]

\[0 \quad \tau_D \quad 2\tau_D \quad 3\tau_D \quad 4\tau_D \]

\[0 \quad \tau_D \quad 2\tau_D \quad 3\tau_D \quad 4\tau_D \]

\[0 \quad \tau_D \quad 2\tau_D \quad 3\tau_D \quad 4\tau_D \]

\[0 \quad \tau_D \quad 2\tau_D \quad 3\tau_D \quad 4\tau_D \]

\[0 \quad \tau_D \quad 2\tau_D \quad 3\tau_D \quad 4\tau_D \]
Theory vs Experiment

- First demonstration of chimeras in delay systems

- Exist over long time
- Excellent agreement between the model and experiment
Multiheaded Chimeras

- Tunable number of heads
- Increased system complexity
- Coexistence of chimeras with different number of heads
- Can be possibly used in applications
Double delay systems
System with two delays

\[i_{DBR_{\text{in}}} \rightarrow i_{DBR} \rightarrow i_{\text{act}} \rightarrow \text{Fabry-Pérot slab} \rightarrow P_0 \rightarrow P(\lambda) \rightarrow \text{Photodiode} \]

\[\rightarrow i_x \rightarrow \text{Bandpass filter} \rightarrow i_D \rightarrow \tau_1 \rightarrow \text{Delay line} \rightarrow \tau_2 \gg \tau_1 \rightarrow \text{Delay line} \]
System with two delays

\[\varepsilon \dot{x} + \delta \int_{t_0}^t x(\xi) d\xi + x = (1 - \gamma) f(x(t - 1)) + \gamma f(x(t - 100)) \]
Coherent core
Incoherent core
Dissipative solitons: optical memory medium?
Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays

M. Marconi¹, J. Javaloyes², S. Barland¹, S. Balle³ and M. Giudici¹*

1. Corresponding author.

2. Present address: Laboratoire de Physique de l'École Normale Supérieure, Université PSL, CNRS, École Polytechnique, 91128 Palaiseau, France.

3. Present address: Complex Systems Experiment Laboratory, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
Regenerative memory in time-delayed neuromorphic photonic resonators

B. Romeira1,*, R. Avô1, José M. L. Figueiredo1, S. Barland2 & J. Javaloyes3

Received: 25 September 2015
\(x \)

Time

\(2\tau_2 \)

\(0 \)

\(4\tau_1 \)

\(-0.1 \)

\(0.7 \)

\(x \)

-0.1

0.7

\(0 \)

\(2\tau_2 \)

\(0 \)

\(4\tau_1 \)
Multistability

Brunner et al. arxiv:1712.03283
Take-away message

The dynamical behavior on the delay interval can be translated to a network.

Those networks allow observation of chimera states and dissipative solitons.
Applications of Chimera States/Dissipative solitons

Study of synchronization in complex networks:
 - Power grids
 - Networks of neurons in the human heart

Neuromorphic computing
 - Optical memory
Thank You

www.penkovsky.com